

WELCOME

DEPARTMENT OF PHYSICS

SAGARDIGHI K K S MAHAVIDHYALAYA

SAGARDIGHI, MURSHIDABAD, PIN: 742226

AFFILIATED TO UNIVERSITY OF KALYANI,

NADIA, WEST BENGAL

WEBSITE: WWW.SKKSM.AC.IN

E-MAIL: SDG.MAHAVIDYALAYA@GMAIL.COM

CONTACT NO. 03483 268966

ABOUT DEPARTMENT

Welcome to the Department of Physics at Sagardighi Kamada Kinkar Smriti Mahavidyalaya. It's a thriving academic institution nestled in the bucolic beauty of a rural area. Our department is comprised one dedicated and passionate teacher who strive to provide a rich and comprehensive educational experience for our students.

After six years of establishment(2008) of college, the subject Physics was first introduced as a general/programme course during the academic year 2014-15 with an intake capacity of 30 students after obtaining approval from University of Kalyani.

Then from the academic year 2023-2024 Institute offers 4-year UG degree programme (with research/without research) in Physics (Major) and as per the Curriculum and Credit Framework for UG programmes developed by the UGC and guidelines of University of Kalyani there will be provisions of awarding UG certificate and UG Diploma and Basic UG Degree with Major. Department is now committed to build well equipped laboratory where the student can excel their practical skills.

Our Vision and Mission: To make student oriented Deptt of Physics where research and education are closely related.

To provide opportunity to the students to find solutions of significant scientific questions with sharp eye for the societed benefit and application in relation to great challenges of our society.

Our Duty and Responsibility for Providing to Student Facilities:

- I. To make student friendly environment in clean.
- II. To supply proper apparatus instrument in lab.
- III. Scope of doing experiment with proper guidance.
- IV. We provide online facilities to read various journal.
- V. We provide extra classes for slow learners.
- VI. We provide enrich library as per syllabus & need.

Introduction:-

The Physics Department at Sagardighi K.K.S Mahavidyalaya is renowned for its passionate faculty members who bring years of experience and expertise to the classroom. Our teams of four highly qualifiedteachers are dedicated to creating an environment that fosters intellectual growth, critical thinking, and a love for gain knowledge about physics.

Teacher in our department is specialized in different areas of physics, offering a diverse range of knowledge and perspectives to our students.

We believe in the transformative power of physics, and our goal is to ignite a passion for intellectual exploration in each student. Through thought-provoking discussions, engaging lectures, practical work and interactive activities, we strive to create a vibrant learning community where students can freely express their ideas, challenge assumptions, and develop their own stance.

Join us at the Physics Department of Sagardighi K.K.S. Mahavidyalaya, where physics inquiry and personal growth go hand in hand. Together, let's embark on a journey of self-discovery and intellectual enlightenment.

FACULTY MEMBERS: - 1. SYED JAHID ANWAR (SACT & HOD)

Syllabus of U.G course under Klyani University under C.B.C.S:

https://klyuniv.ac.in/wp-content/uploads/2022/06/Physics-Prog-CBCS_syllabi-2018.pdf https://klyuniv.ac.in/wp-content/uploads/2022/06/KU-General_Physics-CBCS_syllabus-Proposed.pdf Syllabus of U.G course under Klyani University under N.E.P:

https://klyuniv.ac.in/wp-content/uploads/2023/07/UG-Physics-Syllabus-Sem-I-and-II-2023-2024.pdf

DEPARTMENT OF PHYSICS UNDER GRADUATE PROGRAMME

PROGRAMME OUTCOME (PO)-COURSE OUTCOME (CO)

SESSION 2018-2019

INTRODUCTION: The University Grants Commission (UGC) has taken various measures by means of formulating regulations and guidelines and updating them, in order to improve the higher education system and maintain minimum standards and quality across the Higher Educational Institutions in India. The various steps that the UGC has initiated are all targeted towards bringing equity, efficiency and excellence in the Higher Education System of country. These steps include introduction of innovation and improvements in curriculum structure and content, the teaching-learning process, the examination and evaluation systems, along with governance and other matters. The introduction of Choice Based Credit System is one such attempt towards improvement and bringing in uniformity of system with diversity of courses across all higher education institutes in the country. The CBCS provides an opportunity for the students to choose courses from the prescribed courses comprising of core, elective, skill enhancement or ability enhancement courses. The courses shall be evaluated following the grading system, is considered to be better than conventional marks system. This will make it possible for the students to move across institutions within India to begin with and across countries for studying courses of their choice. The uniform grading system shall also prove to be helpful in assessment of the performance of the candidates in the context of employment.

Outline of the Choice Based Credit System being introduced:

- 1. **Core Course (CC):** A course, which should compulsorily be studied by a candidate as a core requirement is termed as a Core course.
- 2. **Elective Course:** Generally a course which can be chosen from a pool of courses and which may be very specific or specialized or advanced or supportive to the discipline/subject of study or which provides an extended scope or which enables an exposure to some other discipline/subject/domain or nurtures the student's proficiency/skill is termed as an Elective Course.
 - 2.1 **Discipline Specific Elective Course (DSEC):** Elective courses that are offered by the main discipline/subject of study is referred to as Discipline Specific Elective. The University/Institute may also offer discipline related Elective courses of interdisciplinary nature (to be offered by main discipline/subject of study).
 - 2.2 **Generic Elective Course (GEC):** An elective course chosen generally from an unrelated discipline/subject, with an intention to seek exposure is called a Generic Elective.
- 3. Ability Enhancement Courses/ Skill Enhancement Courses:
 - 3.1 Ability Enhancement Compulsory Course (AECC): Ability enhancement courses are the courses based upon the content that leads to Knowledge enhancement. They (i) Environmental Science, (ii) English Communication) are mandatory for all disciplines.
 - 3.2 **Skill Enhancement Course (SEC):** These courses may be chosen from a pool of designed to provide value-based and/or skill-based instruction.

CBCS CURRICULUM FOR SEMESTERIZED UNDER-GRADUATE COURSE IN

PHYSICS (PROGRAMME/GENERAL)

A. TOTAL Number of courses in UG-CBCS B.Sc. GENERAL:

Types of	Core	Elective course	nnt Course	T	
course	(CC)	Discipline specific elective course (DSE)	Ability Enhancmnt compulsory course(AECC)	Skill Enhancmnt course (SEC)	T A L
No. of course	12	6	2	4	24
Credit/course	6	6	2	2	120

TABLE-1: DETAILS OF COURSES OF B.SC. (GENERAL) UNDER CBCS

S. No.	Particulars of Course	Cred	it Point				
1.	Core Course: 12 Papers	Theory + Practical	Theory + Tutorial				
1.A.	Core Course: Theory (12 papers)	12x4 = 48	12x5 = 60				
1.B.	Core Course (Practical/Tutorial)*(12 papers)	12x2 = 24	12x1 = 12				
2.	Elective Courses: (6 papers)						
<i>A</i> .	DSE: Theory (6 papers)	6x4 = 24	6x5 = 30				
В.	DSE(Pract./ Tutor.)* (6 papers)	6x2 = 12 $6x1 = 6$					
#Optio	onal Dissertation/Project Work in place of one DSE paper (6 crea	lits) in 6 th semester					
3. Ability	y Enhancement Courses						
A.	Ability Enhancement compulsory course (AECC): (Theory)*(2 papers) (2 papers of 2 credits each)	2x2 = 4	2x2 = 4				
В.	Skill Enhancement Course (SEC): (Theory)*(4 papers) (4 papers of 2 credits each)	4x2 = 8	4x2 = 8				
	Total Credit: 120 120						
	## Wherever there is a practical, there will be no tutorial and vice- versa.						

TABLE-2: SEMESTER WISE DISTRIBUTION OF COURSES & CREDITS IN B.SC. GENERAL

Courses/	Sem-I	Sem-II	Sem-	Sem-IV	Sem-V	Sem-VI	Total No. of	Total
(Credits)			III				Courses	credit
CC-1,2,3	3	3	3	3				
(6)	(1A,2A,	(1B,2)	(1C,2C,	1D,2D,				
	3A)	B,3B)	3C)	3D)	-	-	12	72
DSE -	-	-	-	-	3	3		
1,2,3 (6)					(1A,2A,3A)	(1B, 2B, 3B)	6	36
AECC (2)	1	1	-	-	-	-	2	04
SEC (2)	-	-	1	1	1	1	4	08
Total No. of								
Course/Sem	4	4	4	4	4	4	24	
Total Credit								
/Semester	20	20	20	20	20	20		120

TABLE-3: SEMESTER & COURSEWISE CREDIT DISTRIBUTION IN B.SC.(GENERAL)

(6 Credit: 75 Marks)

	SEMESTER-I				
Course Code	Course Title	Course wise Class (L+T+P)	Credit		
PHY-G-CC-T-01	Mathematical Physics – I/Mechanics /Electricity and Magnetism	Core (60L+60P)	6 (4T+2P)		
PHY-G-CC-P-01					
from other discipline	from other discipline	Core	6		
from other discipline	from other discipline	Core	6		
AECC-01	English Communication/ Environmental Science	AECC	2		
Total	4 courses	Total	20		
	SEMESTER-II				
Course Code	Course Title	Course Nature	Credit		
PHY-G-CC-T-02	Waves and Optics/Mathematical Physics-	Core	6 (4T+2P)		
PHY-G-CC-P-02	II/Thermal Physics/Digital Systems and Applications	(60L+60P)			
from other discipline	from other discipline	Core	6		
from other discipline	from other discipline	Core	6		
AECC-02	English Communication/ Environmental Science	AECC	2		
Total	4 courses	Total	20		
	SEMESTER-III				
Course Code	Course Title	Course Nature	Credit		
PHY-G-CC-T-03	Mathematical Physics – III/Elements of Mode	rn Core	6 (4T+2P)		
PHY-G-CC-P-03	Physics/Analog Systems and Applications	(60L+60P)			
from other discipline	from other discipline	Core	6		
from other discipline	from other discipline	Core	6		
PHY-G-SEC-T-01	Any one from TABLE-4.2	SEC (30L)	2		
Total	4 courses	Total	20		
	SEMESTER-IV				
Course Code	Course Title	Course Nature	Credit		
PHY-G-CC-T-04	Quantum Mechanics and Applications/ Solid	State Core	6 (4T+2P)		
PHY-G-CC-P-04	Physics/ Electromagnetic Theory/ Statistical Mechanics	(60L+60P)			
from other discipline	from other discipline Core 6				
from other discipline	from other discipline Core				
PHY-G-SEC-T-02	Any one from TABLE-4.2 (not taken earlier)	SEC (30L)	2		
Total	4 courses	Total	20		

	SEMESTER-V			
Course Code	Course Title	Course Nature	Credit	
PHY-G-DSE-T-01	Mechanics/Electricity and Magnetism/	DSE	6 (4T+2P)	
PHY-G-DSE-P-01	Thermal Physics and Statistical Mechanics/Waves and Optics	(60L+60P)		
from other discipline	from other discipline	DSE	6	
from other discipline	from other discipline	DSE	6	
PHY-G-SEC-T-03	Any one from TABLE-4.2 (not taken	SEC	2	
	earlier)	(30L)		
Total	4 courses	Total	20	
	SEMESTER-VI			
Course Code	Course Title	Course Nature	Credit	
PHY-G-DSE-T-02	Digital, Analog Circuits and	DSE	6 (4T+2P)	
PHY-G-DSE-P-02	Instrumentation/Elements of Modern Physics/Solid State Physics/Quantum	(60L+60P)		
C .1 1' '1'	Mechanics/Nuclear And Particle Physics	DGE		
from other discipline	from other discipline	DSE	6	
from other discipline	from other discipline	DSE	6	
PHY-G-SEC-T-04	Any one from TABLE-4.2 (not taken	SEC	2	
	earlier)	(30L)		
Total	4 courses	Total	20	
Total (All semesters)	24 courses	Total	120	

TABLE-4.1: Choices for Pass: Core Papers (Credit: 06 each)

Core Papers(Cree	Core Papers(Credit: 06 each): 4 papers to be selected for Pass/General Students							
1. Mathematical Physics-I	5. Mathematical Physics-II	9. Elements of Modern Physics	13. Electromagnetic Theory					
2. Mechanics)	6. Thermal Physics	10. Analog Systems and Applications	14. Statistical Mechanics					
3. Electricity and Magnetism	7. Digital Systems and Applications	11. Quantum Mechanics and Applications						
4. Waves and Optics	8. Mathematical Physics III	12. Solid State Physics						

TABLE-4.2: Skill Enhancement Courses (Credit: 02 each)

For Pass COURSE (may be chosen): 1 paper for Semester-III; 1 paper for Semester-IV;1 paper for Semester-V and 1 paper for Semester-VI **Skill Enhancement Course-1 & Skill Enhancement Course-2** 1.Physics Workshop 3. Electrical Circuits & 5.Renewable Energy & 7.Radiation **Skills** Network Skills **Energy Harvesting** Safety 2.Computational 4. Basic 6.Technical Drawing 8. Applied Optics Physics Skills Instrumentation Skills 9.Weather Forecasting

TABLE-4.3: Discipline specific elective course (DSE) (Pass/General course only): (Credit: 06 each)

For Pass/Gener	al COURSE:1 paper for Seme	ster-V and 1 paper for Semester	-VI
1.Mechanics	3.Thermal Physics and Statistical Mechanics	5.Digital, Analog Circuits and Instrumentation	7.Solid State Physics
2.Electricity and Magnetism	4. Waves and Optics	6.Elements of Modern Physics	8. Quantum Mechanics
			9.Nuclear and Particle Physics

Programme Outcomes (PO)

Knowledge Outcomes

After completing B.Sc. (Physics) Programme students will be able to:

- Apply the basic principles of Physics to the events occurring around us and also in the world.
- 2. Try to find out or analyse scientific reasoning for various things.

Skill Outcomes

After completing B.Sc. (Physics) Programme students will be able to:

- 1. Use of computers and various software and programming skills
- 2. Apply the knowledge to develop the sustainable and eco-friendly technology for pollution free environment
- 3. Collaborate effectively on team-oriented projects in the field of Physics
- 4. Communicate scientific information in a clear and concise manner both orally and in writing or through audio video presentations

Generic outcomes

Students will

- 1. Develop ability to work in group
- 2. Develop capacity of critical reasoning, judgment and communication skills.
- 3. Develop abilities for logical thinking

Programme Specific Outcomes (PSO)

PSO1. The new CBCS Physics Syllabus Introduced from the academic session 2018-2019 is both diversified and job-oriented. It helps to develop both intellectual and technical skills of the students. **PSO2.** After completion of B.Sc. (Programme), the students can enrol themselves for M.Sc. degree in Physics.

PSO3. They can also appear in JAM, CUET and other entrance tests for getting admission in integrated

- Ph.D. course in different premier research institutes in India as well as Masters in different central Universities.
- **PSO4.** They have also the opportunity to study B.Tech, MCA and other technical courses after graduation in Physics.
- **PSO5.** Moreover, they can get admission in B. Ed. Course and have the opportunity to get job as school teachers.
- **PSO6.** Skill enhancement course is helpful to develop technical skills of the students. It will help them to find jobs in different technical fields also.
- **PSO7.** After all undergraduates in Physics have the opportunity of getting jobs in different public as well as private sectors.
- **PSO8.** To help the students prepare for subjects/ discipline specific national level competitive exams.

COURSE OUTCOME (CO)

SE	COURSE	CREDIT	CONTENT OF KU	COURSE OUTCOME (CO)
M	/COURSE CODE		SYLLABUS	
I	PHY-G-CC-T-01 /P-01 (Mathematical Physics-I)	4T+2P =6	❖ Calculus	CO 1. Various properties of function and series expansions of function are depicted here in detail. Differential equations up to second order as well as partial derivatives and their properties are mentioned in this section.
			 Vector Calculus 	CO 2. Different properties of vectors and their operations are mentioned. Vector differential operator and its role in various cases are represented here.
			❖ Vector	CO 3. Integration of vectors and related basic theorems are discussed in detail.
			Vector Integration	CO 4. Vector operations and vector differential operator are studied in different coordinates systems.
			Orthogonal Curvilinear Coordinates	CO 5. Properties of Dirac Delta function and expressions of special functions as delta function are analyzed here
			 Dirac Delta function and its properties 	CO 6. Computer Programme are developed to solve different numerical problems

		<u> </u>		
			 Practical 	
OR,PHY-G-CC-T- 01/P-01 (Mechanics)	4T+2P =6	*	Fundamentals of Dynamics□	CO 7.Fundamental properties of reference frames, Galilean transformations and dynamics of a system of particles are described.
		*	Work and Energy□	CO 8.Basic descriptions of work, kinetic energy, potential energy, energy conservation law, conservative and nonconservative forces and work done by them are mentioned.
		*	Collisions	CO 9.A detailed study of elastic and inelastic collisions between particles in different reference frames.
		*	Rotational Dynamics	CO 10. This topic helps learner to get a brief idea of angular momentum and its conservation principle, torque and moment of inertia. Students also learn how to calculate moment of inertia for different shapes and kinetic energy of a rotational body.
		*	Elasticity□	CO 11.Definition of elastic constants and relations between them are studied in detail with the calculation of twisting torque for a cylinder or wire.
		*	Fluid Motion	CO 12.Kinematics of moving fluids.
		*	Gravitation and Central Force Motion	CO 13. Fundamentals of gravitation and a detailed study of motion of a particle under central force field are described.
		*	Oscillations	CO 14. This topic helps students to solve the differential equation of simple harmonic oscillator for different cases like with and without damping force and with externally applied sinusoidal force. They also get a brief idea of resonance, sharpness of resonance and quality factor.
		*	□Non-Inertial Systems	CO 15.Laws of Physics in rotating coordinate systems with development of Coriolis force and its applications are elaborately described.
		*	Special Theory of	CO 16. A brief description of postulates

			Relativity□	of Special Theory of Relativity, Lorentz transformation, Lorentz contraction, time dilation, mass-energy equivalence, relativistic Doppler effect and four vector are introduced.
		*	Practical	CO 17.Students learn some laboratory based experiments related to
				Mechanics. Ex – determine the moment of inertia,g by using bar or Kater's pendulum etc
OR,PHY-G-CC- T-01/P-01 (Electricity and Magnetism)	4T+2P =6	*	Electric Field and Electric Potential□ Dielectric Properties of Matter□	CO 18. Student will learn about electric field, electric field lines, electric flux. CO19. Student will learn Gauss' Law in electrostatic and its application to charge distributions. CO 20. Student will learn about the Conservative nature of Electrostatic Field. CO 21. Student will learn Laplace's and Poisson equations. CO 22. Student will learn about Potential and Electric Field of a dipole. CO 23. Student will learn about the Surface charge and force on a conductor. CO 24. Student will learn about image charges. CO 25. Student will learn about Electric Field in matter. CO 26. Student will learn about Electric Field in matter. CO 27. Student will learn about Electrical Susceptibility and Dielectric Constant. CO 28. Student will learn about Displacement vector D. Relations between E, P and D. Gauss' Law in dielectrics.
		*	Magnetic Field	CO 29.Student will learn about Magnetic force between current elements. CO 30.Student will learn about Biot-Savart's Law and its simple applications: straight wire and circular loop. CO 31.Student will learn about Magnetic Dipole and its Dipole Moment. CO 32.Student will learn about Ampere's Circuital Law and its application. CO 33.Student will learn about Vector Potential. CO 34.Student will learn about Torque on a current loop in a uniform Magnetic Field.

			* * *	Magnetic Properties of Matter□ Electromagnetic Induction□ Electrical Circuits Network theorems□ Ballistic Galvanometer Practical	s laws for AC circuits. CO 42.Student will learn about Complex Reactance and Impedance. CO 43Student will learn about (1) Resonance, (2) Power Dissipation and (3) Quality Factor, and (4) Band Width of LCR circuit. CO 44.Student will learn Thevenin theorem, Norton theorem, Superposition theorem, Reciprocity theorem, Maximum Power Transfer theorem. CO 45.Student will learn Ballistic Galvanometer: Current and Charge Sensitivity. CO 46. Student will learn Electromagnetic damping. Logarithmic damping, CDR. CO47. Students learn some laboratory based experiments related to Electricity And Magnetism.
II	PHY-CC-G-T- 02/P-02 (Waves and Optics)	4T+2P =6	*	Superposition of Collinear Harmonic oscillations	as:Resistance , Voltage, current etc. CO 01: Student will learn Linearity and Superposition Principle. CO 02: Student will learn Superposition of two collinear oscillations having equal frequencies and (2) different frequencies (Beats).
			*	Superposition of two perpendicular Harmonic Oscillations	CO 03: Student will learn Superposition of N collinear Harmonic Oscillations with (1) equal phase differences and equal frequency differences. CO 04 Student will learn Graphical and Analytical Methods.Lissajous Figures

			(1:1 and 1:2) and their uses.
	.	Wave Motion	CO 05: Student will learn Plane and Spherical Waves, Longitudinal and Transverse Waves.
			CO 06: Student will learn about Plane Progressive (Travelling) Waves and Wave Equation.
			CO 07 : Student will learn about Particle and Wave Velocities and Differential Equation.
*	.	Velocity of Waves	CO 08: Student will learn how to find Pressure of a Longitudinal Wave. Energy Transport.
			CO 09: Student will learn Velocity of Transverse Vibrations of Stretched Strings.
	.* .	Superposition of	CO 10 : Student will learn Velocity of Longitudinal Waves in a Fluid in a Pipe.
		Superposition of Two Harmonic Waves	CO 11: Student will learn about Newton's Formula for Velocity of Sound and Laplace's Correction.
	*	Wave Optics	CO 12: Student will learn about Standing (Stationary) Waves in a String: Fixed and Free Ends. CO 13: Student will learn about Phase and Group Velocities and Changes with respect to Position and Time. CO 14: Student will learn about Energy of Vibrating String and Transfer of Energy. CO 15: Student will learn about Normal Modes of Stretched Strings and Plucked and Struck Strings. CO 16: Student will learn Melde's Experiment and Longitudinal Standing Waves and Normal Modes.
	.	Interference	CO 17: Student will learn to treat Open and Closed Pipes and Superposition of N Harmonic Waves.
*	*	□Interferometer	CO 18: Student will learn Electromagnetic nature of light. CO 19: Student will learn Huygens Principle and Temporal and Spatial Coherence. CO 20: Student will learn Division of amplitude and wavefront. CO 21: Student will learn Young's

and Fresnels Bi-prism. CO 22: Student will learn Interference in Thin Films: parallel and wedge-shaped films. CO 23: Student will learn Fringes of equal inclination and Fringes of equal inclination and Fringes of equal thickness. CO 24: Student will learn to measure wavelength and refractive index. CO 25: Student will learn Michelson Interferometer and Idea of form of fringes. CO 26: Student will learn Determination of Wavelength, (3) Wavelength Difference, (4) Refractive Index, and (5) Visibility of Fringes. CO 27: Student will get an idea about Fabry-Perot interferometer. CO 28: Student will learn Mifraction of light, Kirchhoff s Integral Theorem, Fresnel-Kirchhoff s Integral Fromula and its application to rectangular slit. CO 29: Student will learn about Diffraction grating and Resolving Power of a telescope. CO 30: Student will learn about Diffraction grating and Resolving power of grating. CO 31: Student will learn about Fresnel diffraction pattern of a straight edge, a silt and a wire. CO 32: Student will learn about Fresnel diffraction pattern of a straight edge, a silt and a wire. CO 32: Student will learn about Fresnel diffraction pattern of a straight edge, a silt and a wire. CO 32: Student will learn about Fresnel diffraction pattern of a straight edge, a silt and a wire. CO 32: Student will learn about Fresnel diffraction pattern of a straight edge, a silt and a wire. CO 32: Student will learn about Fresnel diffraction pattern of a straight edge, a silt and a wire. CO 32: Student will learn about Fresnel diffraction pattern of a straight edge, a silt and a wire. CO 32: Student will learn patch the patch of				
Image: Practical diffraction Interferometer and Idea of form of fringes. CO 26: Student will learn Determination of Wavelength, (3) Wavelength Difference, (4) Refractive Index, and (5) Visibility of Fringes. CO 27: Student will get an idea about Fabry-Perot interferometer. CO 28: Student will learn diffraction of light, Kirchhoff s Integral Theorem, Fresnel-Kirchhoff s Integral Tomula and its application to rectangular sill. CO 29: Student will learn Circular aperture, Resolving Power of a telescope. CO 30: Student will learn Bout Diffraction grating and Resolving power of grating. CO 31: Student will learn about Diffraction pattern of a straight edge, a slit and a wire. CO 32: Student will learn about Fresnel diffraction pattern of a straight edge, a slit and a wire. CO 33: The practical knowledge of wave motion doing experiments: Tuning fork, electric vibrations. They would also learn optical phenomena such as interference, diffraction and dispersion and do experiments related to optical devices: Prism, grating, spectrometers OR,PHY-CC-G-T-O2P-02 (Mathematical physics II) ♦ Fourier Series CO1.A detailed study of different function sand its application are described, CO2.Expansion of periodic functions in a series of sine and cosine functions and determination of Fourier coefficients discussed in details.		*	□Diffraction	CO 22: Student will learn Interference in Thin Films: parallel and wedge-shaped films. CO 23: Student will learn Fringes of equal inclination and Fringes of equal thickness.
CO 29 : Student will learn Circular aperture, Resolving Power of a telescope. CO 30: Student will learn about Diffraction grating and Resolving power of grating. CO 31 : Student will learn Fresnel's Half-Period Zones for Plane Wave. CO 32: Student will learn about Fresnel diffraction pattern of a straight edge, a slit and a wire. CO 33: The practical knowledge of wave motion doing experiments: Tuning fork, electric vibrations. They would also learn optical phenomena such as interference, diffraction and dispersion and do experiments related to optical devices: Prism, grating, spectrometers CO1.A detailed study of different function sand its application are described, CO2. Expansion of periodic functions and determination of Fourier coefficients discussed in details.		*		CO 25: Student will learn Michelson Interferometer and Idea of form of fringes. CO 26: Student will learn Determination of Wavelength, (3) Wavelength Difference, (4) Refractive Index, and (5) Visibility of Fringes. CO 27: Student will get an idea about Fabry-Perot interferometer. CO 28: Student will learn diffraction of light, Kirchhoff s Integral Theorem, Fresnel-Kirchhoff s Integral formula and
Period Zones for Plane Wave. CO 32: Student will learn about Fresnel diffraction pattern of a straight edge, a slit and a wire. CO 33: The practical knowledge of wave motion doing experiments: Tuning fork, electric vibrations. They would also learn optical phenomena such as interference, diffraction and dispersion and do experiments related to optical devices: Prism, grating, spectrometers OR,PHY-CC-G- T-02/P-02 (Mathematical physics II) * Fourier Series CO1.A detailed study of different function sand its application are described, CO2.Expansion of periodic functions in a series of sine and cosine functions and determination of Fourier coefficients discussed in details.		*	Fresnel Diffraction	CO 29: Student will learn Circular aperture, Resolving Power of a telescope. CO 30: Student will learn about Diffraction grating and Resolving power
T-02/P-02 (Mathematical physics II) =6 (Mathematical physics II) =6 CO2. Expansion of periodic functions in a series of sine and cosine functions and determination of Fourier coefficients discussed in details.		*	Practical	CO 32: Student will learn about Fresnel diffraction pattern of a straight edge, a slit and a wire. CO 33: The practical knowledge of wave motion doing experiments: Tuning fork, electric vibrations. They would also learn optical phenomena such as interference, diffraction and dispersion and do experiments related to optical devices:
brief idea of some special functions and Frobenius Method their application,	T-02/P-02 (Mathematical			function sand its application are described, CO2. Expansion of periodic functions in a series of sine and cosine functions and determination of Fourier coefficients discussed in details. CO3. This topic helps learner to get a brief idea of some special functions and

		and Special CO4. Singular Poin	ts of Second Order
		Functions Linear Differential E importance are elaborated cost. Fundamental Bessel, Hermite an Differential Equation cost. A brief descrit Gamma Functions the mare included.	Equations and their porately described. s of Legendre, d Laguerre are described.
		Some Special CO7. Expression of Gamma Functions described.	ps students to solve
		Theory of Errors CO9. Fundamental Random Errors, Pro Errors, Normal Law described in details	of Errors are
		Equations Wave equation and vibrational modes of	in problems of cal and spherical paration of variables. its solution for a stretched string, cular membranes are
OR,PHY-CC-G- T-02/P-02 (THERMAL PHYSICS)	T+2P =6	hermodynamics Zeroth and First Law applications.Also st explain the 1stlaw of as well as its applications.	of Thermodynamics
		Thermodynamics CO2. Define the state of thermodynamics applications.	atement of the 2 nd law and can explain its
			ic concept of entropy the Carnot's cycle as ermodynamics.
		Potentials CO4. Classify differ potentials & can ap explain the 1 st & 2 ^{nc} transitions with exa	order phase
		Maxwell's Thermodynamic CO5. Apply Maxwe	

		Kinetic Theory of Gases	
		❖ Distribution of Velocities □	
		Molecular Collisions	CO6. Recall Maxwell-Boltzmann law of distribution of velocities in detail.
		❖ Real Gases	CO7. Summaries transport phenomenon in Ideal gas.
		Laboratory Experiments	CO8. Understand the behaviour of real gases can design different P-V diagrams.
			CO9. Practice of different basic experiments on thermodynamics in laboratory.
OR,PHY-CC-G- T-02/P-02 (Digital Systems	4T+2P =6	❖ Introduction to CRO□	CO 1. Block diagram of CRO, role of various parts and its applications are discussed here.
and Applications)		Integrated Circuits	CO 2. Components of Integrated circuits advantages and drawbacks of ICs, and their classifications are depicted here. CO 3. Various types of number systems
		□ ❖ Digital Circuits	and their conversion to each other, realization of basic logic circuits (logic gates) using diodes and transistors are studied here. In addition basic logic gates are used to construct logic circuits.
		□	CO 4.De Morgan's theorems are investigated based on the Boolean variables. Besides conversion of truth tables into equivalent logic circuits are studied here. CO 5.Basic idea of Multiplexers, Demultiplexers, Decoders, Encoders and their applications are discussed here.
		Data processing circuits □	CO 6.Based on the binary operations various arithmetic circuits are analyzed here. CO7. SR, D, and JK Flip-Flops. Clocked
	*	 Arithmetic circuits 	(Level and Edge Triggered) Flip-Flops, Preset and Clear operations,Race- around conditions in JK Flip-Flop. M/S JK Flip-Flop are studied here.
		Sequential Circuits	CO8.IC 555:block diagram and applications of A stable multi vibrator and Mono stable multi vibrator are represented here.

			*	Timers	CO9. Serial-in-Serial-out, Serial-in-Parallel-out, Parallel-in-Serial-out and Parallel-in-Parallel-out Shift Registers (only up to 4 bits) are investigated here. CO10.Ring Counter, Asynchronous counters, Decade Counter, Synchronous Counter are studied in this section. CO11.Basic concepts of input output devices and functional operation of computer are given.
				Shift registers	CO12. Main features of 8085 Microprocessor, Block diagram, Components and functions and applications are represented here.
			*	Counters(4 bits) □	CO13.Introductory idea of 1 byte, 2 byte & 3 byte instructions are mentioned here.
			*	Computer Organization	CO 14.To perform Practical Experiments related to theory for technical skills
			*	Intel 8085 Microprocessor Architecture	
			*	Introduction to Assembly Language	
			*	Practical .	
III	PHY-CC-G-T- 03/P-03 (Mathematical Physics-III)	4T+2P =6	*	Complex Analysis□	CO1.Complex numbers, functions of complex variables, and their various properties, related theorems and solution of problems regarding complex variables are discussed elaborately.
			*	Integrals Transforms	CO2.Fourier transforms of various functions and its applications in solving differential equations are studied here.
			*	Laplace Transforms□	CO3.Laplace's transforms of elementary functions, its properties and applications in various cases are discussed in detail.
			*	Practical	CO 4. various Numerical problems are solved using computers resulting in technical skills.

OR,PHY-CC-G- T-03/P-03 (Elements of	4T+2P =6	*	Planck's quantum Theory & Black Body Radiation□	CO1. Explain Photo electric effects of light & Compton Scattering.
Modern Physics)		*	Heisenberg uncertainty principle & Wave Packets	CO2. State the Heisenberg Uncertainty principle and able to explain the wave particle duality.
		*	Two slit interference experiment & Schrodinger equation □	CO3. Contract the Schrodinger equation for non-relativistic particles.
		*	One dimensional infinitely rigid box	CO4. Define the tunnelling effects.
		*	Size and structure of atomic nucleus	CO5. Conceptualise the structure of atoms and nucleus.
		*	Radioactivity	CO6. Understand the basic concept of Radioactivity.
		*	Lasers	CO7. Comprehend basic principle and use of Lasers.
		*	Different Laboratory Experiments	CO8. Practice of different basic experiments on modern Physics in laboratory.
OR,PHY-CC-G- T-03/P-03 (Analog Systems and	4T+2P =64T+ 2P=6	*	Semiconductor diodes	CO 1.To study the fundamental properties of Semiconductor diodes and the mechanism of current follow in PN junction diodes.
Applications)	*	*	Two terminal devices and their applications	CO 2.To provide knowledge about the performance and efficiency of various two terminal devices. CO 3.To study the different characteristic curves of BJT and to analyse the
		*	□Bipolar Junction Transistors□	mechanism of current flow in transistors. CO 4.To provide knowledge about transistor biasing stabilization circuits
		*	Amplifiers	and classification of different amplifiers. CO 5.It deals with the frequency response of R-C coupled amplifier.
				CO 6.Effects of positive and negative

			*	Coupled Amplifiers□	feedback on different parameters of amplifiers are dealt with. CO 7. To study the different types of oscillators.
			*	Feedback in Amplifiers	CO8.It deals with different characteristics of Ideal and Practical OPAMP (IC 741). CO 9.It gives the knowledge of applications of Op-Amps in designing circuits to solve different mathematical
			*	Sinusoidal Oscillators□	operations.
			*	Operational Amplifiers	CO 10. To study A/D and D/A conversion, etc.
				(Black box approach)	CO 11.To perform Practical Experiments related to theory for technical skills
			*	Applications of Op- Amps	
			*	Conversions□	
			*	Practical	
IV	PHY-CC-G-T- 04/P-04 (Quantum Mechanics and Applications)	4T+2P =6	*	Time dependent Schrodinger equation	CO 1. An introduction of quantum mechanics along with the properties of wave function, eigen value, eigen function, different types of operators and their expectation values. CO 2. An overview of stationary states, wave packets and uncertainty principle is
			*	Time independent Schrodinger equation- Hamiltonian	described along with the general solution of time independent Schrodinger equation. CO 3. This topic helps students to understand the applications of the time independent Schrodinger equation in one-dimension for square well potential
			*	General discussion of bound states in an arbitrary	and simple harmonic oscillator. CO 4. A detailed study on the application
				potential□	of the time independent Schrodinger equation for hydrogen-like atoms. CO 5. A brief discussion on space quantisation, Larmor's theorem, electron
					i agamaanda i aliildi a nicoletti electioti
			*	Quantum theory of hydrogen-like atoms	spin magnetic moment, gyromagnetic ratio and Bohr magneton. CO 6. Qualitative discussion on normal and anomalous Zeeman effect, Paschen Back and Stark effect.

		*	Atoms in external magnetic fields	understand fine structure, vector atom model and spin orbit coupling (L-S and J-J coupling) in atoms. CO 8.Using Scilab, solutions of Schrodinger equation for the ground state and the first excited state for different type of potentials are studied.
		*	Many electron atoms□	
		*	Practical	
OR,PHY-CC-G- T-04/P-04 (Solid State Physics)	4T+2P =6	*	Crystal Structure	CO 1: Student will learn about Amorphous and Crystalline Materials. CO 2: Student will learn about Lattice Translation Vectors and Lattice with a Basis -Central and Non-Central Elements. CO 3: Student will learn Unit Cell, Miller Indices, Reciprocal Lattice, Types of Lattices. CO 4: Student will learn Brillouin Zones and Diffraction of X-rays by Crystals. CO 5: Student will learn about Bragg's Law and Atomic and Geometrical Factor. CO 6: Student will learn Lattice Vibrations and Phonons, Linear Monoatomic and Diatomic Chains. CO 7: Student will learn Acoustical and Optical Phonons and Qualitative Description of the Phonon Spectrum in
		*	Elementary Lattice Dynamic	Solids. CO 8: Dulong and Petit's Law, Einstein and Debye theories of specific heat of solids, T³ law. CO 9: Student will learn about: Dia, Para, Ferri and Ferromagnetic Materials. CO 10: Student will learn Classical Langevin Theory of dia-and Paramagnetic Domains and Quantum Mechanical Treatment of Paramagnetism. CO 11: Student will learn about Curie's
		*	Magnetic Properties of Matter□	law, Weiss's Theory of Ferromagnetism and Ferromagnetic Domains. CO 12: Student will get an idea about Hysteresis and Energy Loss. CO 13: Student will learn about Polarization, Local Electric Field at an Atom and Depolarization Field.

*	Dielectric Properties of Materials Ferroelectric Properties of Materials	CO 16: Student will learn about Cauchy and Sellmeir relations, Langevin-Debye equation. CO 17: Student will learn Plasma Oscillations, Plasma Frequency, Plasmons, TO modes. CO 18: Student will learn about Classification of crystals. CO 19: Student will learn Piezoelectric effect, Pyroelectric effect, Ferroelectric effect and Electrostrictive effect. CO 20: Student will learn about Curie-Weiss Law, Ferroelectric domains, PE hysteresis loop. CO 21: Student will learn Kronig Penny modeland Band Gap in solids. CO 22: Student will learn about Conductor, Semiconductor (P and N type) and insulator. CO 23: Student will learn about Conductivity of Semiconductor, mobility and Hall Effect. CO 24: Student will learn how to find conductivity & Hall coefficient of a solid. CO 25: Student will learn about Superconductors and superconductivity. CO 26: Student will learn Meissner effect. CO 27: Student will learn Critical Temperature and Critical magnetic field of superconductor.
*	□Elementary band theory□	CO 28: Student will learn Type I and type II Superconductors, London's Equation and Penetration Depth CO 29:Student will learn about Idea of BCS Theory(No derivation)

			*	Superconductivity	
	OR,PHY-CC-G-	4T+2P	*	Maxwell Equations	CO1. Define Maxwell's equation
	T-04/P-04 (Statistical Mechanics)	=6	*	EM Wave Propagation in Unbounded Media	andexplain its applications. CO2. Identifythe EMwave propagation through different unbound media.
			*	EM Wave in Bounded Media	CO3. Identifythe EM wave propagation through different kind of bounded media. CO4. Describe the basic concept on polarisation of EM wave and explain its
			*	Polarization of Electromagnetic Waves□	applications CO5. Analyse the optical rotation of polarization process.
			*	Rotatory Polarization	CO6. Define optical wave-guides & phase and group velocity of guided waves. CO7. Definedifferent types of optical fibres.
			*	Wave Guides□	CO8. Practice of different basic experiments on EM radiation in laboratory.
			*	Optical Fibers□	
			*	Different Laboratory Experiments	
V	PHY-G-DSE-T- 01/P- 01(Mechanic)	4T+2P =6	*	Vectors	CO 01: This topic help students to understand vector algebra and scalar and vector product .

*	Ordinary Differential Equations	CO 02: Student learn about 1 st and 2 nd order homogeneous differential equations with constant coefficients CO 03: This topic help students to
*	·	understand the frames of reference and Newton's laws of motion
*	Laws of Motion	CO 04: This topic help students to understand The conservation law of energy and Momentum CO 05: This topic helps learner to get a brief idea of angular momentum and its conservation principle, torque and
*	Momentum and energy	moment of inertia. Students also learn how to calculate moment of inertia for different shapes and kinetic energy of a rotational body.
*	Rotational Motion	CO 06: Fundamentals of gravitation and a detailed study of motion of a particle under central Non-Inertial Systems Special Theory of Relativity Practical force field are described. CO 07: A detailed study of elastic and inelastic collisions between particles in different reference frames.
*	Gravitation	CO 08: Definition of elastic constants and relations between them are studied in detail with the calculation of twisting torque for a cylinder or wire.
*	Oscillations	CO 09: A detailed study of constancy of speed of light and postulates of special theory of relativity. CO 10: Students learn some laboratory based experiments related to
*	Elasticity	Mechanics. Ex – determine the moment of inertia,g by using bar or Kater's pendulum etc
*	Speed Theory of Relativity	
*	Practical	

		*	Maxwell's equation and Electromagnetic wave propagation	as:Resistance , Voltage, current etc.
		*	Practical	
OR,PHY-G-DSE- T-01/P-01 (Thermal Physics And Statistical Mechanics)	4T+2P =6	*	Law's of Thermodynamics	CO 01: Define Zeroth Law and explain its applications. Also students will able to explain the 1 ST law of Thermodynamics as well as its applications. CO 02:Define the statement of the 2 ND law of thermodynamics and can explain its applications.
		*	Thermodynamics potential	CO 03: The students also learn how laws of thermodynamics are used in a heat engine to transform heat into work. CO 04 Thermodynamic potentials. Enthalpy and Maxwell's relation and its application
				CO 05: Maxwell law of distribution of velocities in detail. Mean free path(Zeroth Order)
		*	Kinetic Theory of Gases	CO 06:The students also learn Blackbody radiation, Spectral distribution, Concept of Energy density, Derivation of Planck's law, Deduction of Wien's distribution law, Rayleigh-Jeans Law, Stefan Boltzmann Law and Wien's
		*	Theory of Radiation	displacement law from Planck's law CO 07: Apply the Thermodynamic behavior of Ideal, Bose, Fermi gases and applications of statistical mechanics. CO 08: Maxwell-Boltzmann law of distribution of velocities in detail. CO 09: about Maxwell Boltzmann
		*	Statistical Mechanics	statistics, Bose Einstein statistics and Fermi Dirac Statistics To get the knowledgethe coefficient of

				thermal conductivity of Cu by Searle's Apparatus.
		*	Practical	
OR,PHY-G-DSE- T-01/P-01(waves And Optics)	4T+2P =6	*	Superposition of Collinear Harmonic oscillations	CO 01: Student will learn Linearity and Superposition Principle. CO 02: Student will learn Superposition of two collinear oscillations having equal frequencies and (2) different frequencies (Beats).
		*	Superposition of two perpendicular Harmonic Oscillations. Wave Motion - General	CO 03: Student will learn Graphical and Analytical Methods.Lissajous Figures (1:1 and 1:2) and their uses. CO 04: Student will learn Transverse waves on a string. Travelling and standing waves on a string. Normal Modes of a string. Group velocity, Phase velocity. Plane waves. Spherical waves, Wave intensity CO 05: Student will learn about Surface Tension ,Poiseuille's formula and variation of viscosity of a liquid with temperature-lubrication.
		*	Sound	CO 06: Student will learn Simple harmonic motion - forced vibrations and resonance - Fourier's Theorem - Application to saw tooth wave and square wave - Intensity and loudness of sound - Decibels - Intensity levels - musical notes - musical scale. CO 07: Student will learn about Electromagnetic nature of light.
		*	Wave Optics	Definition and Properties of wave front. Huygens Principle. CO 08: Student will learn about Interference: Division of amplitude and division of wavefront. Young's Double Slit experiment. Lloyd's Mirror and Fresnel's Biprism. Phase change on reflection: Stokes' treatment.

Interference in Thin Films: parallel and wedge-shaped films. Fringes of equal inclination (Haidinger Fringes). Fringes of equal inclination (Haidinger Fringes). Fringes of equal thickness (Fizeau Fringes). Newton's Rings: measurement of wavelength and refractive index. Co 09: Student will learn (1) idea of form of fringes (no theory needed), (2). Determination of wavelength, (3). Wavelength difference. (4) Refractive index, and (5) Visibility of fringes. CO 10: Student will learn fessnel's Half-Period Zones for Plane Wave. CO 11: Student will learn about Theory of a Zone Plate and Multiple Foci of a Zone Plate. CO 12: Student will learn about Transverse nature of light waves. Plane polarized light – production and analysis. Circular and elliptical polarization. ★ Michelson's Interferometer interferometer interferometer between the Refractive Index of the Material of a Prism using Sodium Light, the value of Cauchy Constants,AND e the Coefficient of Viscosity of water by any method ETC ★ Polarization ★ Practical CO 01: Student will learn about Difference between Analog and Digital Circuits. Binary Numbers. Decimal to Binary and Binary to Decimal Conversion, AND, OR and NOT Gates (Realization using Diodes and Transistor), NAND and NOR Gates as Universal Gates. XOR and XNOR Gates. CO 22: Student will learn about De Morgan's Theorems. Boolean Laws.					
CO 11: Student will learn about Theory of a Zone Plate and Multiple Foci of a Zone Plate and Multiple Foci of a Zone Plate. CO 12: Student will learn about Transverse nature of light waves. Plane polarized light – production and analysis. Circular and elliptical polarization. CO 13: Students would gain practical knowledge about the Refractive Index of the Material of a Prism using Sodium Light, the value of Cauchy Constants, AND e the Coefficient of Viscosity of water by any method ETC Polarization ▼ Practical ▼ Practical CO 01:Student will learn about Difference between Analog and Digital Circuits. Binary Numbers. Decimal Corversion, AND, OR and NOT Gates (Realization using Diodes and Transistor). NAND and NOR Gates as Universal Gates. XOR and XNOR Gates. CO 02:Student will learn about De			*	Interference	wedge-shaped films. Fringes of equal inclination (Haidinger Fringes); Fringes of equal thickness (Fizeau Fringes). Newton's Rings: measurement of wavelength and refractive index. CO 09: Student will learn (1) Idea of form of fringes (no theory needed), (2) Determination of wavelength, (3) Wavelength difference, (4) Refractive index, and (5) Visibility of fringes. CO 10: Student will learnFresnel's Half-
VI PHY-G-DSE-T- 02/P- 02(Digital,analog circuits and Instrumentation) VI PHY-G-DSE-T- 02(Digital,analog circuits and Instrumentation) Where the content of the Material of a Prism using Sodium Light, the value of Cauchy Constants, AND ethe Coefficient of Viscosity of water by any method ETC VI PHY-G-DSE-T- 02(Digital,analog circuits and Instrumentation) VI Digital Circuits Difference between Analog and Digital Circuits. Binary Numbers. Decimal to Binary and Binary to Decimal Conversion, AND, OR and NOT Gates (Realization using Diodes and Transistor). NAND and NOR Gates as Universal Gates. XOR and XNOR Gates. CO 02:Student will learn about De			*		CO 11: Student will learn about Theory of a Zone Plate and Multiple Foci of a Zone Plate. CO 12: Student will learn about Transverse nature of light waves. Plane polarized light – production and analysis.
VI PHY-G-DSE-T- 02/P- 02(Digital,analog circuits and Instrumentation) AT+2P = 6 Digital Circuits Co 01:Student will learn about Difference between Analog and Digital Circuits. Binary Numbers. Decimal to Binary and Binary to Decimal Conversion, AND, OR and NOT Gates (Realization using Diodes and Transistor). NAND and NOR Gates as Universal Gates. XOR and XNOR Gates. CO 02:Student will learn about De			*	Diffraction	knowledge about the Refractive Index of the Material of a Prism using Sodium Light,the value of Cauchy Constants,AND e the Coefficient of
VI PHY-G-DSE-T- 02/P- 02(Digital,analog circuits and Instrumentation) * Digital Circuits Difference between Analog and Digital Circuits. Binary Numbers. Decimal to Binary and Binary to Decimal Conversion, AND, OR and NOT Gates (Realization using Diodes and Transistor). NAND and NOR Gates as Universal Gates. XOR and XNOR Gates. CO 02:Student will learn about De			*	Polarization	
Difference between Analog and Digital Circuits. Binary Numbers. Decimal to Binary and Binary to Decimal Conversion, AND, OR and NOT Gates (Realization using Diodes and Transistor). NAND and NOR Gates as Universal Gates. XOR and XNOR Gates. CO 02:Student will learn about De			*	Practical	
	VI	02/P- 02(Digital,analog circuits and	 *	Digital Circuits	Difference between Analog and Digital Circuits. Binary Numbers. Decimal to Binary and Binary to Decimal Conversion, AND, OR and NOT Gates (Realization using Diodes and Transistor). NAND and NOR Gates as Universal Gates. XOR and XNOR Gates.

		Simplification of Logic Circuit using Boolean Algebra. Fundamental Products. Minterms and Maxterms. Conversion of a Truth Table into an Equivalent Logic Circuit by (1) Sum of Products Method and (2) Karnaugh Map. CO 03:Student will learn about Binary Addition. Binary Subtraction using 2's Complement Method). Half Adders and Full Adders and Subtractors, 4-bit binary Adder-Subtractor.
*	Semiconductor devices and Amplifiers	CO 04: Student will learn about Semiconductor Diodes: P and N type semiconductors. Barrier Formation in PN Junction Diode. Qualitative Idea of Current Flow Mechanism in Forward and Reverse Biased Diode. PN junction and its characteristics. Static and Dynamic Resistance. Principle and structure of (1) LEDs, (2) Photodiode, (3) Solar Cell. CO 05:Student will learn about Bipolar Junction transistors: n-p-n and p-n-p Transistors. Characteristics of CB, CE and CC Configurations. Current gains α and β, Relations between α and β.
		CO 06:Student will learn about Characteristics of an Ideal and Practical Op-Amp (IC 741), Open-loop and closed- loop Gain. CMRR, concept of Virtual ground. Applications of Op-Amps: (1) Inverting and non-inverting Amplifiers, (2) Adder, (3) Subtractor, (4) Differentiator, (5) Integrator, (6) Zero crossing detector. CO 07: Student will learn about Introduction to CRO: Block Diagram of
*	Operational Amplifiers(Black Box approach)	CRO. Applications of CRO. CO 08:Student will learn about Power Supply: Half-wave Rectifiers. Centre- tapped and Bridge Full-wave Rectifiers Calculation of Ripple Factor and Rectification Efficiency, Basic idea about capacitor filter, Zener Diode and Voltage Regulation CO 09: Students would gain practical
*	Instrumentation's	knowledge about To verify and design AND, OR, NOT and XOR gates using NAND gates. To minimize a given logic circuit. Half adder, Full adder and 4-bit Binary Adder AND Adder-Sub tractor using Full Adder I.C. CO 10: To design an astable multivibrator of given specifications using 555 Timer.
	*	devices and Amplifiers Operational Amplifiers(Black Box approach)

		*	Practical	CO 11: To design a monostable multivibrator of given specifications using 555 Timer. CO 12:To study IV characteristics of PN diode, Zener and Light emitting diode. CO 13: To study the characteristics of a Transistor in CE configuration.
OR,PHY-G-DSE- T-02/P- 02(Elements And Modern Physics)	4T+2P =6	*	Planck's quantum Theory & Black Body Radiation□ Heisenberg	CO1. Explain Photo electric effects of light & Compton Scattering. CO2. State the Heisenberg Uncertainty
			uncertainty principle & Wave Packets	principle and able to explain the wave particle duality.
		*	Two slit interference experiment & Schrodinger equation □	CO3. Contract the Schrodinger equation for non-relativistic particles.
		*	One dimensional infinitely rigid box	CO4. Define the tunnelling effects.
		*	Size and structure of atomic nucleus Radioactivity	CO5. Conceptualise the structure of atoms and nucleus. CO6. Understand the basic concept of Radioactivity.
		*	Practical	CO7. Practice of different basic experiments on modern Physics in laboratory.
OR,PHY-G-DSE- T-02/P-02(Solid State Physics)	4T+2P =6	*	Crystal Structure	CO 1: Student will learn about Amorphous and Crystalline Materials. CO 2: Student will learn about Lattice Translation Vectors and Lattice with a Basis -Central and Non-Central Elements. CO 3: Student will learn Unit Cell, Miller Indices, Reciprocal Lattice, Types of Lattices. CO 4: Student will learn Brillouin Zones and Diffraction of X-rays by Crystals. CO 5: Student will learn about Bragg's Law and Atomic and Geometrical Factor. CO 6: Student will learn Lattice Vibrations and Phonons, Linear Monoatomic and Diatomic Chains. CO 7: Student will learn Acoustical and Optical Phonons and Qualitative

*	Elementary Lattice Dynamic	Description of the Phonon Spectrum in Solids. CO 8: Dulong and Petit's Law, Einstein and Debye theories of specific heat of solids, T³ law. CO 9: Student will learn about: Dia, Para, Ferri and Ferromagnetic Materials.
*	Magnetic Properties of Matter□	CO 10: Student will learn Classical Langevin Theory of dia-and Paramagnetic Domains and Quantum Mechanical Treatment of Paramagnetism. CO 11: Student will learn about Curie's law, Weiss's Theory of Ferromagnetism and Ferromagnetic Domains. CO 12: Student will get an idea about Hysteresis and Energy Loss. CO 13: Student will learn about Polarization, Local Electric Field at an Atom and Depolarization Field. CO 14: Student will learn about Classical Theory of Electric Polarizability. CO 15: Student will learn about Normal and Anomalous Dispersion. CO 16: Student will learn about Cauchy and Sellmeir relations, Langevin-Debye
*	Dielectric Properties of Materials	equation. CO 17: Student will learn Plasma Oscillations, Plasma Frequency, Plasmons, TO modes. CO 18: Student will learn about Curie- Weiss Law, Ferroelectric domains, PE hysteresis loop. CO 19: Student will learn about Conductor, Semiconductor (P and N type) and insulator. CO 20: Student will learn about Conductivity of Semiconductor, mobility and Hall Effect.
*	□Elementary band theory□	CO 21: Student will learn about Superconductors and superconductivity. CO 26: Student will learn Meissner effect. CO 27: Student will learn Critical Temperature and Critical magnetic field of superconductor. CO 28: Student will learn Type I and type II Superconductors, London's
*	Superconductivity	Equation and Penetration Depth CO 29:Student will learn about Idea of BCS Theory(No derivation)
*	Practical	CO 30:Students would gain practical knowledge about Solid State Physics

Skill Enhancement Course [PHY-G-SEC-T-(01-04) To be studied in GENERAL/PASS course] (Credit: 02 each)

1. Computational Physics

2. Radiation and Safety

3.Renewable Energy And Energy Harvesting

4.Electrical Circuits & Network Skills

CO 01: This course would introduce students with the basic knowledge of computers their applications in solving common and scientific problems, the course include scientific programming languages, scientific word processing and graphical analysis.

CO 01: The students would gain the knowledge of different types of radiation and its interactions with matter, would also know about the photons, charged particles, neutrons, about radiation detection, monitoring and safety measures, and also learn about the applications of nuclear techniques.

CO 01: The students would gain the knowledge of Fossil fuels and nuclear energy, their limitation, need of renewable energy, non-conventional energy sources. An overview of developments in Offshore Wind Energy, Tidal Energy, Wave energy systems, Ocean Thermal Energy Conversion, solar energy, biomass, biochemical conversion, biogas generation, geothermal energy tidal energy, Hydroelectricity.

CO 02: The students would gain the knowledge of Solar energy, its importance, storage of solar energy, solar pond, non convective solar pond, applications of solar pond and solar energy, solar water heater, flat plate collector, solar distillation, solar cooker, solar green houses, solar cell, absorption air conditioning. Need and characteristics of photovoltaic (PV) systems, PV models and equivalent circuits, and sun tracking systems

CO 03: The Students Would Gain The Knowledge Of Fundamentals Of Wind Energy, Wind Turbines And Different Electrical Machines In Wind Turbines, Power Electronic Interfaces, And Grid Interconnection Topological. Also Learn About Tide Characteristics And Statistics, Tide Energy Technologies, Ocean Thermal Energy, Osmotic Power, Ocean Bio-Mass.

CO 04: The Students Would Gain The Knowledge Of Linear generators, physics mathematical models, recent applications

CO 01: The Students Would Gain The Knowledge Of Voltage, Current, Resistance, and Power. Ohm's law. Series, parallel, and series-parallel combinations. AC Electricity and DC Electricity. Familiarization with multimeter, voltmeter and ammeter. AND Main electric circuit elements and their combination. Rules to analyze DC sourced electrical circuits. Current and voltage drop across the DC circuit elements. Single-phase and three-phase alternating current sources. Rules to analyze AC sourced electrical circuits. Real, imaginary and complex power components of AC source. Power factor. Saving energy and money.

CO 02: Student will learn about Single-phase, three-phase & DC motors. Basic design. Interfacing DC or AC sources to control heaters & motors. Speed & power of ac motor.

CO 03: Student wil learn about Different types of conductors and cables. Basics of wiring-Star and delta connection. Voltage drop and losses across cables and conductors. Instruments to measure current, voltage, power in DC and AC circuits. Insulation. Solid and stranded cable. Conduit. Cable trays. Splices: wirenuts, crimps, terminal blocks, split bolts, and solder. Preparation of extension board.

SESSION -2022-2023

CBCS CURRICULUM FOR SEMESTERIZED UNDER-GRADUATE COURSE IN PHYSICS (PROGRAMME/GENERAL)

INTRODUCTION: The University Grants Commission (UGC) has taken various measures by means of formulating regulations and guidelines and updating them, in order to improve the higher education system and maintain minimum standards and quality across the Higher Educational Institutions in India. The various steps that the UGC has initiated are all targeted towards bringing equity, efficiency and excellence in the Higher Education System of country. These steps include introduction of innovation and improvements in curriculum structure and content, the teaching-learning process, the examination and evaluation systems, along with governance and other matters. The introduction of Choice Based Credit System is one such attempt towards improvement and bringing in uniformity of system with diversity of courses across all higher education institutes in the country. The CBCS provides an opportunity for the students to choose courses from the prescribed courses comprising of core, elective, skill enhancement or ability enhancement courses. The courses shall be evaluated following the grading system, is considered to be better than conventional marks system. This will make it possible for the students to move across institutions within India to begin with and across countries for studying courses of their choice. The uniform grading system shall also prove to be helpful in assessment of the performance of the candidates in the context of employment.

Outline of the Choice Based Credit System being introduced:

- 1. **Core Course (CC):** A course, which should compulsorily be studied by a candidate as a core requirement is termed as a Core course.
- 2. **Elective Course:** Generally a course which can be chosen from a pool of courses and which may be very specific or specialized or advanced or supportive to the discipline/ subject of study or which provides an extended scope or which enables an exposure to some other discipline/subject/domain or nurtures the student's proficiency/skill is termed as an Elective Course.
- 2.1 **Discipline Specific Elective Course (DSEC)**: Elective courses that are offered by the main discipline/subject of study is referred to as Discipline Specific Elective. The University/Institute may also offer discipline related Elective courses of interdisciplinary nature (to be offered by main discipline/subject of study).
- 2.2 **Generic Elective Course (GEC):** An elective course chosen generally from an unrelated discipline/subject, with an intention to seek exposure is called a Generic Elective.
- 3. Ability Enhancement Courses/ Skill Enhancement Courses:
- 3.1 **Ability Enhancement Compulsory Course (AECC):** Ability enhancement courses are the courses based upon the content that leads to Knowledge enhancement. They (i) Environmental Science, (ii) English Communication) are mandatory for all disciplines.
- 3.2 **Skill Enhancement Course (SEC):** These courses may be chosen from a pool of courses designed to provide value-based and/or skill-based instruction.

CBCS CURRICULUM FOR SEMESTERIZED UNDER-GRADUATE COURSE IN

PHYSICS (PROGRAMME/GENERAL)

A. TOTAL Number of courses in UG-CBCS B.Sc. GENERAL:

Types of course	Core	Elective course	Ability Enhan	T	
	course (CC)	Discipline specific elective course (DSE)	Ability Enhancement compulsory course(AECC)	Skill Enhancement course (SEC)	O T A
No. of course	12	6	2	4	24
Credit/course	6	6	2	2	120

TABLE-1: DETAILS OF COURSES OF B.SC. (GENERAL) UNDER CBCS

S. No.	Particulars of Course	Credit Point	
1.	Core Course: 12 Papers	Theory + Practical	Theory + Tutorial
1.A.	Core Course: Theory (12 papers)	12x4 = 48	12x5 = 60
1.B.	Core Course (Practical/Tutorial)*(12 papers)	12x2 = 24	12x1 = 12
2.	Elective Courses: (6 papers)		
A.	DSE: Theory (6 papers)	6x4 = 24	6x5 = 30
В.	DSE (Pract./ Tutor.)* (6 papers)	6x2 = 12	6x1 = 6
#Opti	onal Dissertation/ Project Work in place of one DSE paper (6 o	credits) in 6 th semester	,
3. Abilit	y Enhancement Courses		
<i>A</i> .	Ability Enhancement compulsory course (AECC): (Theory)*(2 papers) (2 papers of 2 credits each)	2x2 = 4	2x2 = 4
В.	Skill Enhancement Course (SEC): (Theory)*(4 papers) (4 papers of 2 credits each)	4x2 = 8	4x2 = 8
Total C	redit:	120	120

TABLE-2: SEMESTER WISE DISTRIBUTION OF COURSES & CREDITS IN B.SC. GENERAL

Courses/ (Credits)	Sem-I	Sem-II	Sem-III	Sem-IV	Sem-V	Sem-VI	Total No. of Courses	Total credit
CC-1,2,3 (6)	3 (1A,2A, 3A)	3 (1B,2B, 3B)	3 (1C,2C, 3C)	3 1D,2D, 3D)	-	-	12	72
DSE - 1,2,3 (6)	-	-	-	-	3 (1A,2A,3A)	3 (1B,2B,3B)	6	36
AECC (2)	1	1	-	-	-	-	2	04
SEC (2)	-	-	1	1	1	1	4	08
Total No. of Course/ Sem	4	4	4	4	4	4	24	
Total Credit /Semester	20	20	20	20	20	20		120

TABLE-3: SEMESTER & COURSEWISE CREDIT DISTRIBUTION IN B.SC.(GENERAL)

(6 Credit: 75 Marks)

SEMESTER-I		•	•
Course Code	Course Title	Course wise	Credit
		Class (L+T+P)	
PHY-G-CC-T-01	Mechanics	Core	6
PHY-G-CC-P-01		(60L+60P)	(4T+2P)
from other discipline	from other discipline	Core	6
from other discipline	from other discipline	Core	6
AECC-01	English Communication/	AECC	2
	Environmental Science		
Total	4 courses	Total	20
SEMESTER-II			To the
Course Code	Course Title	Course Nature	Credit
PHY-G-CC-T-02	Electricity and Magnetism	Core	6
PHY-G-CC-P-02		(60L+60P)	(4T+2P)
from other discipline	from other discipline	Core	6
from other discipline	from other discipline	Core	6
AECC-02	English Communication/ Environmental Science	AECC	2
Total	4 courses	Total	20
SEMESTER-III	+ COUISES	1 Otal	μυ
Course Code	Course Title	Course Nature	Credit
PHY-G-CC-T-03	Thermal Physics and Statistical Mechanics	Course rvature	6
PHY-G-CC-P-03	Thermal Physics and Statistical Mechanics	(60L+60P)	(4T+2P)
from other discipline	from other discipline	Core	6
from other discipline	from other discipline	Core	6
PHY-G-SEC-T-01	Renewable Energy & Energy Harvesting	SEC(30L)	2
Total	4 courses	Total	20
SEMESTER-IV	+ courses	Total	20
Course Code	Course Title	Course Nature	Credit
PHY-G-CC-T-04	Waves and Optics	Core	6
PHY-G-CC-P-04	- Waves and Spaces	(60L+60P)	(4T+2P)
from other discipline	from other discipline	Core	6
from other discipline	from other discipline	Core	6
PHY-G-SEC-T-02	Weather Forecasting	SEC(30L)	2
Total	4 courses	Total	20
SEMESTER-V			
Course Code	Course Title	Course Nature	Credit
PHY-G-DSE-T-01	Digital, Analog Circuits and Instrumentation/ Elements	DSE	6
PHY-G-DSE-P-01	of Modern Physics	(60L+60P)	(4T+2P)
from other discipline	from other discipline	DSE	6
from other discipline	from other discipline	DSE	6
PHY-G-SEC-T-03	Electrical Circuits & Network Skills	SEC(30L)	2
Total	4 courses	Total	20
SEMESTER-VI			
Course Code	Course Title	Course Nature	Credit
PHY-G-DSE-T-02	Solid State Physics/ Nuclear and Particle Physics	DSE	6
PHY-G-DSE-P-02		(60L+60P)	(4T+2P)
from other discipline	from other discipline	DSE	6
from other discipline	from other discipline	DSE	6
PHY-G-SEC-T-04	Basic Instrumentation Skills	SEC(30L)	2
Total	4 courses	Total	20
Total (All semesters)	24 courses	Total	120

UG 4 YEAR PHYSICS (HONOURS/ HONOURS WITH RESEARCH)

(Under NEP 2020)

W.E.F. the Academic Session 2023-24

Programme Outcome (PO)-Course Outcome (CO)

Course Structure Physics (NEP-2020)-KU

	SEMESTER-I											
Course Code	Course Title	Nature of Course	Credit of	Class hours/	Eva	luation						
Course Code	Course Title	Nature of Course	Course	week	Internal	Semester End	Total					
PHY-M-T-1	Mathematical	Major	6	6	15	60	75					
PHY-M-P-1	physics- I (4+2)	Major	6	0	13	00	73					
PHY-MI-T-1	Mathematical	Minor	4	4	10	40	50					
PHY-MI-P-1	Physics -I (3+1)	Millor	7	7	10	40	30					
PHY-MU-T-1	Physics in everyday life	Multidisciplinary Course	3	3	10	35	45					
PHY-SEC-T-1	Electrical circuit and network skills	Skill Enhancement Course	3	3	10	35	45					
		Value Added Course	4	4	10	40	50					
05			20	20	55	210	265					

Value Added Course will be common to all major

	SEMESTER-II											
Course Code	Course Title	Nature of Course	Credit of	Class	Е	valuation	Total					
Course Code	Course Title	Nature of Course	Course	hours/ week	Internal	Semester End						
PHY-M-T-2	Machanias (4+2)	Major	6	6	15	60	75					
PHY-M- P-2	Mechanics (4+2)	Major	6	0	13	00	15					
PHY-MI-T-2	Machanias (2+1)	Minor	4	4	10	40	50					
PHY-MI-P-2	Mechanics (3+1)	Willion	4	4	10	40	30					
PHY-MU-T-2	Weather forecasting	Multidisciplinary Course	3	3	10	35	45					
		Ability Enhancement Course	4	4	10	40	50					
PHY-SEC-T-2	Basic Instrumentation Skills	Skill Enhancement Course	3	3	10	35	45					

*

	Summer Internship	4	4		
05		20	20		265

Ability Enhancement Course will be common to all major

COURSE OUTCOME (CO)

S	COURSE	CREDIT	CONTENT OF KU		S. NO	COURSE OUTCOME (CO)
E	/COURSE CODE		SY	LLABUS		
1 S T	PHY-M-T -1/PHY- M-P-1 Mathematical physics-I	4T+2P =6	*	Calculus Vector Calculus	01	CO 1. Various properties of function and series expansions of function are depicted here in detail. Differential equations up to second order as well as partial derivatives and their
	PHY-MI-T -1/PHY-MI-P-1 Mathematical Physics -I	3T+1P =4	*			properties are mentioned in this section.
			*	Vector Integration	02	CO 2. Different properties of vectors and their operations are mentioned. Vector differential operator and its role in various cases are represented here.
				·	03	CO 3. Integration of vectors and related basic theorems are discussed in detail.
			*	Orthogonal Curvilinear Coordinates	04	CO 4. Vector operations and vector differential operator are studied in different coordinates systems.
			*	Matrices	05	CO 5. Properties of Dirac
			*	Introduction to probability		Delta function and expressions of special functions as delta function are analyzed here
			*	Dirac Delta function and its properties	06	CO 6. Computer Programme are developed to solve different numerical problems
			*	Practical		

			1	
PHY-SEC-T-1 Electrical circuit and network skills	Electrical circuit and network	*	07	CO 01:Demonstrate knowledge of fundamental electric principal such as voltage, Current, Resistance, and Power. Ohm's law, Series, parallel, and series-parallel combinations. AC Electricity and DC Electricity. Familiarization with digital multimeter
			08	CO 02:Student will learn about Main electric circuit elements and their combination. Rules to analyze DC sourced electrical circuits. Current and voltage drop across the DC circuitelements. Single-phase and three-phase alternating current sources (principle of generation, output wave form, advantage of using three-phase).
			09	co 03:Student will learn about DC Power sources (basic idea). AC and DC generators (basicprinciple of action). Inductance, capacitance, and impedance.
			10	CO 04:Student will learn about Single-phase, three-phase & DC motors. Basic design. Speed & power of acmotor.
			11	about Resistors, inductors and capacitors. Diode and rectifiers (half wave and full wave rectifier with L, C, L-C filter arrangement, regulation). Components in Series or in shunt. Response of inductors and capacitors with DC or AC sources.
			12	CO 06:Student will learn about Relays, Fuses and disconnect switches,

					13	Working principle of Circuit breakers, Miniature circuit breaker and its types. CO 07: Student will learn about Conduit wiring (basic idea of house hold wiring). Basics of wiring: Star and Delta Connections. Preparation of extension board, Wiring Materials (Basic information about the wiring components).
N D	PHY-M-T - 2/PHY-M-P-2 Mechanics	4T+2P =6	*	Fundamentals of Dynamics□	14	CO 1.Fundamental properties of reference frames, Galilean transformations and dynamics of a system of particles are described.
			*	Work and Energy□	15	CO 2.Basic descriptions of work, kinetic energy, potential energy, energy conservation law, conservative and nonconservative forces and work done by them are mentioned.
					16	CO 3.A detailed study of elastic and inelastic collisions between particles in different reference frames.
			*	Collisions	17	co 4. This topic helps learner to get a brief idea of angular momentum and its conservation principle, torque and moment of inertia. Students also learn how to calculate moment of inertia for different shapes and kinetic energy of a
			*	Rotational Dynamics	18	rotational body. CO 5.Definition of elastic constants and relations between them are studied in detail with the calculation
			*	Elasticity□	19	of twisting torque for a cylinder or wire. CO 6.Kinematics of moving fluids.
			*	Fluid Motion	20	CO 7.Fundamentals of gravitation and a detailed study of motion of a particle under central force field are described. CO 8.This topic helps
						students to solve the

				ı	
		*	Gravitation and Central Force Motion		differential equation of simple harmonic oscillator for different cases like with and without damping force and with externally applied sinusoidal force. They also
		*	□Oscillations	22	get a brief idea of resonance, sharpness of resonance and quality factor. CO 9.Laws of Physics in rotating coordinate
		*	□Non-Inertial Systems	23	systems with development of Coriolis force and its applications are elaborately described. CO 10. A brief description of postulates of Special
		*	Special Theory of Relativity□		Theory of Relativity, Lorentz transformation, Lorentz contraction, time dilation, mass-energy equivalence, relativistic Doppler effect and four vector are introduced.
		*	Practical	24	CO 11.Students learn some laboratory based experiments related to Mechanics. Ex - determine the moment of inertia, g by using bar or Kater's
PHY-MI-T - 2/PHY-MI-P-2 Mechanics	3T+1P =4	*	Laws of Motion: Momentum and	25	pendulum etc CO 1: Utilize Newton's First Law to understand the concept of equilibrium and inertia.
		*	Energy Rotational Motion	26	CO 02:Apply Newton's Second Law to calculate forces, mass, and acceleration in various contexts.
				27	CO 03: Interpret Newton's Third Law in terms of action-reaction force pairs and their implications for motion. CO 04: Students will learn
	*	*	Non-Inertial Systems	28	about Non-inertial frames and fictitious forces. Uniformly rotating frame. Laws of Physics in rotating coordinate systems. Centrifugal force. Coriolis force and its applications.
				29	CO 05: Understand kinetic and potential energy, and

					apply the work aperay
					apply the work-energy theorem.
		*	Gravitation	30	CO 06: Calculate power
		•	Gravitation		and efficiency in
					mechanical systems.
				31	CO 07: Understand
					angular displacement, velocity, and acceleration.
		*	Collisions	32	CO 08: Apply the principles
				02	of SHM to springs,
					pendulums, and other
				33	oscillating systems. CO 09: Students will learn
		*	Oscillations	33	about Kinematics of
		ľ	Gomanone		Moving Fluids: Poiseuille's
					Equation for Flow of a Liquid through a Capillary
					Tube. Euler's Equation.
				9.	Bernoulli's Theorem. CO 10: Students will learn
		*	Elasticity	34	about Hooke's law -
					Stress-strain diagram -
					Elastic moduli-Relation between elastic constants -
					Poisson's Ratio-Expression
					for Poisson's ratio in terms
			EL CLASSICO		of elastic constants - Work done in stretching
		*	Fluid Motion	35	CO 11: Students will learn
					about Newton's Law of Gravitation. Motion of a
					particle in a central force
					field (motion is in a plane,
		*	Special Theory of		angular momentum is conserved, areal velocity is
			Relativity		constant). Kepler's Laws
					(statement only). Satellite
					in circular orbit and applications
				36	CO 12: Students will learn
		*	Practical		and develop their practical
PHY-SEC-T-2	3	*	Basic of	37	knowledge of Mechanics CO 01: Students will learn
Basic	-		Measurement		about Instruments
Instrumentation Skills					accuracy, precision,
ONIIIO					sensitivity, resolution range etc. Errors in
					measurements and loading
				96	effects. CO 02:Students will learn
				38	about Advantage over
					conventional multimeter for
		*	Electronic		voltage measurement with respect to input impedance
			Voltmeter:		and sensitivity
				39	CO 03:Students will learn
	i .	1		1	<u>i</u>

				T
				about Type of AC millivoltmeters: Amplifier-
				rectifier, and rectifier-
				amplifier. Blockdiagram ac
				millivoltmeter,
				specifications and
				theirsignificance.
			40	CO 04:Students will learn
				about Block diagram of
				basic CRO. Construction of
	*	Cathode Ray		CRT, Electron gun,
		Oscilloscope		electrostatic focusing and
		 - - - - -		acceleration (Explanation
				only- no mathematical
				treatment), brief discussion
				on screenphosphor, visual
				persistence & chemical
				composition. Time base
				operation, synchronization.
				Front panel controls.
				Specifications of a CRO
				and their significance.
			41	CO 05:Students will learn about Block diagram,
	*	Signal Generators		explanation and
	**	Signal Generators and Analysis		specifications of low
		Instruments		frequency signal
				generators. pulse
				generator, and function
				generator.
			42	CO 06:Students will learn
				about Block diagram of
				bridge. working principles
				of basic (balancing type)
				RLC bridge. Specifications of RLC bridge
			<i>j</i> , 0	of RLC bridge CO 07:Students will learn
			43	about Principle and
				working of digital meters.
	*	Impedance		Comparison of analog&
		Bridges & Q-		digitalinstruments.
		Meters		Characteristics of a digital
		-	ĺ	meter.
			44	CO 08:Students will learn
			K T.	about block diagram and
				working of a digital
				multimeter. Working
				principle oftime interval,
		Digital		frequency and period
	*	Digital Instruments		measurement using
		อน นกาษกไร้		universal counter/
				frequency counter, time-
			ĺ	base stability, accuracyand
			. ⊏	resolution. CO 09:Students will learn
			45	about Use of CRO for the
	*	Digital Multi meter		measurement of voltage
				zasa.omonicor voitage

			46	CO 10:Students will learn and develop their practical knowledge of Basic InstrumentationSkills
	*	Practical		

It's important to note that these outcomes can vary depending on the individual interests and goals.

Departmental Routine:- Academic Session 2023-24

SAGARDIGHI K.K.S MAHAVIDYALAYA ❖ SAGARDIGHI ❖ MURSHIDABAD ❖ SESSION −2022

CLASS ROUTINE FOR B.SC. (NEP 2020& CBCS) 1ST ,3RD & 5TH SEMESTER 2023-24

	1	2	3	4	<mark>5</mark>	<mark>6</mark>
	10:30AM TO 11:30 AM	11:30 AM TO 12:30 PM	12:30 PM TO 01:30 PM	01:30 PM TO 02:30 PM	02:30 PM TO 03:30 PM	03:30 PM TO 04:30 PM
MONDAY						
TUESDAY						
WEDNESDAY	PHY-T-CC- 3 RD SEM - SJA	PHY-T-DSE- 5 TH SEM-SJA	PHYS- MAJOR-1 ST SEM-SJA	PHYS-SEC- 1 ST SEM-SJA	PHYS-SEC- 1 ST SEM-SJA	PHY-T-CC- 3 RD SEM - SJA
THURSDAY		PHY-P-CC- 3 RD SEM - SJA	PHY-P-CC- 3 RD SEM - SJA		PHYS- MAJOR-1 ST SEM-SJA	PHY-T- SEC-3 RD SEM SJA
FRIDAY		PHY-P-DSE 5 TH SEM-SJA	PHY-P-DSE 5 TH SEM- SJA	PHYS- MAJOR-PR- 1 ST SEM-SJA	PHYS- MAJOR-PR- 1 ST SEM-SJA	
SATURDAY	PHYS- MAJOR-PR- 1 ST SEM-SJA	PHYS- MAJOR-PR- 1 ST SEM-SJA	PHYS- MAJOR-1 ST SEM-SJA		PHY-T-DSE 5 TH SEM-SJA	

SJA-SYED JAHID ANWAR

Academic Calendar for the Academic session 2023-24:-

SAGARDIGHI KKS MAHAVIDYALYA SAGARDIGHI, MURSHIDABAD

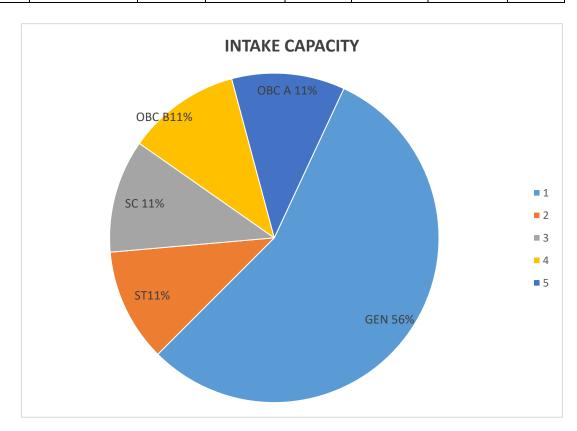
List of Holidays for the Academic Session: 2023-2024

(With effect from 01.07.2023)

JULY 2023	29 -Muharram (Saturday)	01
AUGUST 2023	15-Independence Day (Tuesday)	02
	31-Rakhi Purnima (Thursday)	
SEPTEMBER, 2023	06- Janmashtami (Wrdnesday)	03
	18- Vishwakarma Puja (Monday)	
	28- Fateha-Doaz-Daham (Thursday)	
OCTOBER, 2023	02-Gandhi Jayanti (Monday)	15
	14-Mahalaya, (Saturday)	
	19-31 Durga Puja vacation	
NOVEMBER, 2023	01-16- (puja Vacation).	18
	19-20- Chhat Puja (Sunday & Monday)	
	27-Guru Nanak Birthday (Monday)	
DECEMBER, 2023	13-College Foundation Day (Wednes Day)	02
	25-X-mas Day (Monday)	
JANUARY, 2024	01-New Year Day (Monday)	05
	12-Swami Vivekananda Birthday (Friday)	
	15-Poush Parban (Monday	
	23-Netaji Birthday (Tuesday)	
	26-Republic Day (Friday)	
FEBRUARY, 2024	14- Saraswati Puja –(Wednes Day)	02
	26- Sab-e-Barat –(Monday)	
MARCH, 2024	08-Sivaratri-(Friday)	04
	25-Doljatra-(Monday)	
	26-Holi-(Tuesday)	
	29-Good Friday-(Friday)	

APRIL, 2024	10-Addl.day before Eid-ul-fitr (Wednesday)	02
	11- Eid-ul-fitr-(Thursday)	
	14-B.R.Ambedkar Birthday, Bengali New Year (Sunday)	
MAY, 2024	01-May Day-(Wednesday)	03
	07-Rabindra Jayanti (Tuesday)	
	23-Buddha Purnima) (Thursday)	
JUNE, 2024	17- Eid ul Juha (Monday)	02
	18- Addl. Day after Eid (Tuesday)	
	PRINCIPAL'S DISCRETION	05
Winter Recess	26-12-23 to 31-12-23	06

Tentative Schedule for INTERNAL Assessments:


SEMESTER	1 ST INTERNAL	2 ND INTERNAL
SEM-I:	28-11-2023	03-03-2024
SEM-III	29-11-2023	16-02-2024
SEM-V	30-11-2023	05-01-2024
SEM-VI	05-03-2024	07-05-2024
SEM-IV	06-03-2024	08-05-2024
SEM-II	07-03-2024	09-05-2024

Academic Calendar 2023-2024 (Month-wise Working days):

Month	Total days	Sundays	Holidays	Total working
				Days
July	31	05	01	25
August	31	04	02	25
September	30	04	03	23
October	31	04	15	12
November	30	04	18	08
December	31	05	02	19
January	31	04	05	22
February	29	04	02	23
March	31	05	04	22
April	30	04	02	24
May	31	04	03	24
June	30	05	02	23
Total	366 DAYS	52 DAYS	64 DAYS	250 DAYS

INTAKE CAPACITY & ELIGIBILITY RULES:-

CATEGORY		UR	SC	ST	OBC - A	OBC - B	TOTAL
	TOTAL SEAT	5	1	1	1	1	9
PHYSICS	ADMITTED	5	0	0	1	0	6
	TOTAL APPLIED	16	1	0	16	2	35

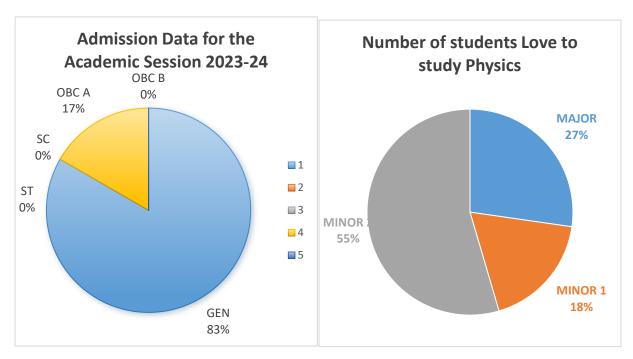
Eligibility & Recognized Boards:- candidate may be admitted to the first semester of four – year (Eight Semester) UG - Courses of Studies on passing Higher Secondary (10 + 2) Examination in general conducted by the West Bengal Council of Higher Secondary Education or an equivalent examination conducted by other State Board / Council , or The W.B. Council of Rabindra Open Schooling , or The National Institute of Open Schooling (NIOS) recognized by the Distant Education Bureau (DEB) subject to fulfillment of the conditions mentioned below.

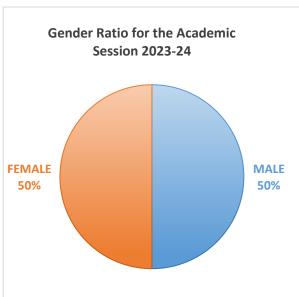
Candidates from 'other' Boards: In case of other Boards / Councils, a candidate shall have to pass in five recognized subjects, of which one shall be English, of full marks not being less than 100 each. A candidate passing in less than five subjects shall not be eligible for admission.

Candidates from Vocational Stream:- However, Candidates passing Higher Secondary examination in vocational stream conducted by the West Bengal State Council of Technical & Vocational Education & Skill Development (WBSCTVE & SD) or any other equivalent Board / Council are also eligible for admission provided that the candidate must have passed in 5 (five) recognized subjects, of which one shall be English

 $Minimum\ Eligibility\ Criteria\ for\ Admission: 4-Year\ UG\ Degree\ (\ Honours\ /\ Honours\ with\ Research\): A$

student who has passed the Higher Secondary (10 + 2) Examination held by the West Bengal Council of Higher Secondary Education or its equivalent Examination from other Boards / Councils with at least five subjects including English as Compulsory Subject of 100 marks and and must pass in mathematics ,Chemistry and physics in H.S is eligible to take admission to the UG - Courses of studies on the basis of merit and available vacancy of the particular subject (s) of the concerned college . Aggregate marks shall be calculated by adding the marks in top - five subjects, including Marks obtained in English, in order of marks secured by a candidate. Marks obtained in Compulsory EnvironmentalStudies (if any) shall not be taken into account for calculation of aggregate marks. A candidate shall be allowed to pursue any one the Programmes in a particular Academic Session. At the initial stage, every student has to choose one Major subject and two Minor subjects.


Reservation of seats there shall be reservation of seats for SC/ST/OBC-A/OBC-B/EWS and differently abled candidates as per rules/ orders of the state Government.


Undergraduate Degree Programmes of 4 - year duration, with multiple entry and exit points and re - entry options, with appropriate certifications will be provided such as : a UG certificate after completing 1 year (2 Semesters) of study in the chosen fields of study, provided that a skill based vocational course (additional 4 credits) must be completed during the summer term by the students who will exit the programme after securing 40 credits. These students are allowed to re - enter the degree programme within three years and complete the degree programme within the stipulated maximum period of seven (7) years.

A UG Diploma after 2 years (4 Semesters) of study, provided that a skill based vocational course (additional 4 credits) must be completed during the summer term by the students who will exit the programme after securing 80 credits. These students are allowed to re - enter the degree programme within three years and complete the degree programme within the stipulated maximum period of seven (7) years.

A Bachelor's Degree with Major shall be given after completing 3 - year (6 Semesters) programme of study . A Bachelor's Degree (Honours) shall be given after completing 4 year (8 Semester) programme of study . If the students complete a rigorous research project / dissertation in their major area (s) study in the 4th year of a bachelor's degree then he / she will be given Honours with Research degree .

Statistical representation of our department, Academic Session 2023-24:-

Internal Question: - Academic Session 2023-24:-

 $https://drive.google.com/drive/folders/1iEHEi64llXNrjeV0bQY46Rz0HnpqnVGM?usp=drive_linkwith the properties of the prop$

Feed Back link for the academic Session 2023-24:-Feed Back link for the academic Session 2023-24:-

Your feedback is an invaluable resource that drives continuous improvement, supports personalized learning, enhances engagement, and nurtures a positive learning environment. so contribute your valuable observation and experiences through your feedback.

https://docs.google.com/forms/d/e/1FAlpQLSdQjZW9czclB4ak3-g0mRbjhz-ir1NaoULvg9T0qlOpbBTuFw/viewform?usp=sf_link

or Scan the QR code →

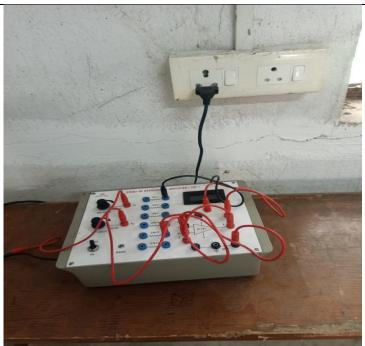
PROFILE OF OUR FACULTY MEMBERS:- SYED JAHID ANWAR $\rightarrow \downarrow$

Name of the Department	Name and Designation		Date of joining		
PHYSICS	SYED JAHID ANWAR SCAT-II		01 ST MARCH , 2019		
Contact No. and e-mail ID	Contact number- 9153141465 e-mail id- tony.sja16@gmail.com				
Academic Information	Qualification (In details like year of passing, Institution, etc.)	 M.Sc in PHYSICS Year- 2016 B.U , JHANSI B.Ed Year-2014 MAHARSHI DAYANAND UNIVERSITY,ROTAK M.Ed Year-2019 WBUTTEPA 			
	Specialization	ELECTF	RONIC		
	Area of Interest	MODERN	PHYSICS		
Teaching Experience	➤ Teaching experience from my date of joining at Sagardighi K.K.S.Mahavidyalaya .				

Department of Physics

Courses Offered

Academic Session - 2023-24


	Semester	Course	Paper Code	Name of the	Course	Total
			-	paper	Credit	
	3 rd Semester	For Programme course Students	PHY-G-CC-T- 03 PHY-G-CC-P- 03	Thermal Physics and Statistical Mechanics	06 (4T+2P)	02
			PHY-G-SEC- T-01	Renewable Energy & Energy Harvesting	02	
	4 th Semester	For Programme course Students	PHY-G-CC-T- 04 PHY-G-CC-P- 04	Electromagnetic Theory	06 (4T+2P)	02
			PHY-G-SEC- T-02	Renewable Energy & Energy Harvesting	02	
	5 th Semester	For Programme course Students	PHY-G-DSE- T-1 PHY-G-DSE- P-01	Electricity and Magnetism	06 (4T+2P)	02
			PHY-G-SEC- T-03	Computational Physics Skills	02	
	6 th Semester	For Programme course Students	PHY-G-DSE- T-02 PHY-G-DSE- P-02	Digital, Analog Circuits and Instrumentation	06 (4T+2P)	02
			PHY-G-SEC- T-04	Weather Forecasting	02	
UNDER N. E. P		For Physics Major	PHY-M-T-1 PHY-M-P-1	MATHEMATICAL PHYSICS-I	06 (4T+2P)	03
	1 St semester	Students	PHY-SEC-T-1	ELECTRICAL CIRCUITS & NETWORK SKILLS	3	
		For other than Physics Major Students	PHY-MI-T-1 PHY-MI-P-1	MATHEMATICAL PHYSICS -I	4 (3T+1P)	
		For Physics Major	PHY-M-T-02 PHY-M-P-02	MECHANICS	06 (4T+2P)	03
	2 nd Semester	Students	PHY-SEC-T-2	Basic Instrumentation Skills	3	
		For other than Physics Major	PHY-MI-T-2 PHY-MI-P-2	MECHANICS	4 (3T+1P)	

		Students				
Total course Offered					14	

http://skksm.ac.in/

https://klyuniv.ac.in/

https://ugcnet.nta.ac.in/

Departmental e-mail id

sagordighi.science20@gmail.com

Feel free to communicate

Thank you...

SYED JAHID ANWAR
Head of the Department of PHYSICS